terça-feira, 30 de agosto de 2011

matematica

  • Prisma reto
    As arestas laterais têm o mesmo comprimento.
    As arestas laterais são perpendiculares ao plano da base.
    As faces laterais são retangulares.
  • Prisma oblíquo
    As arestas laterais têm o mesmo comprimento.
    As arestas laterais são oblíquas ao plano da base.
    As faces laterais não são retangulares.
b_158_180_16777215_0___images_stories_matematica_prisma06.gifBases: regiões poligonais congruentes
Altura: distância entre as bases
Arestas laterais paralelas: mesmas medidas
Faces laterais: paralelogramos
b_186_181_16777215_0___images_stories_matematica_prisma07.gif
Prisma retoAspectos comunsPrisma oblíquo

matematica

  • Prisma reto
    As arestas laterais têm o mesmo comprimento.
    As arestas laterais são perpendiculares ao plano da base.
    As faces laterais são retangulares.
  • Prisma oblíquo
    As arestas laterais têm o mesmo comprimento.
    As arestas laterais são oblíquas ao plano da base.
    As faces laterais não são retangulares.
b_158_180_16777215_0___images_stories_matematica_prisma06.gifBases: regiões poligonais congruentes
Altura: distância entre as bases
Arestas laterais paralelas: mesmas medidas
Faces laterais: paralelogramos
b_186_181_16777215_0___images_stories_matematica_prisma07.gif
Prisma retoAspectos comunsPrisma oblíquo

matematica

Em uma pirâmide, podemos identificar vários elementos:
  1. Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide.
  2. Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide.
  3. Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base.
  4. Altura: Distância do vértice da pirâmide ao plano da base.
  5. Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
  6. Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
  7. Apótema: É a altura de cada face lateral.
  8. Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
  9. Aresta da base: É qualquer um dos lados do polígono da base.

matematica

Em uma pirâmide, podemos identificar vários elementos:
  1. Base: A base da pirâmide é a região plana poligonal sobre a qual se apoia a pirâmide.
  2. Vértice: O vértice da pirâmide é o ponto isolado P mais distante da base da pirâmide.
  3. Eixo: Quando a base possui um ponto central, isto é, quando a região poligonal é simétrica ou regular, o eixo da pirâmide é a reta que passa pelo vértice e pelo centro da base.
  4. Altura: Distância do vértice da pirâmide ao plano da base.
  5. Faces laterais: São regiões planas triangulares que passam pelo vértice da pirâmide e por dois vértices consecutivos da base.
  6. Arestas Laterais: São segmentos que têm um extremo no vértice da pirâmide e outro extremo num vértice do polígono situado no plano da base.
  7. Apótema: É a altura de cada face lateral.
  8. Superfície Lateral: É a superfície poliédrica formada por todas as faces laterais.
  9. Aresta da base: É qualquer um dos lados do polígono da base.

matematica

Em um cone, podem ser identificados vários elementos:
  1. Vértice de um cone é o ponto P, onde concorrem todos os segmentos de reta.
  2. Base de um cone é a região plana contida no interior da curva, inclusive a própria curva.
  3. Eixo do cone é quando a base do cone é uma região que possui centro, o eixo é o segmento de reta que passa pelo vértice P e pelo centro da base.
  4. Geratriz é qualquer segmento que tenha uma extremidade no vértice do cone e a outra na curva que envolve a base.
  5. Altura é a distância do vértice do cone ao plano da base.
  6. Superfície lateral de um cone é a reunião de todos os segmentos de reta que tem uma extremidade em P e a outra na curva que envolve a base.
  7. Superfície do cone é a reunião da superfície lateral com a base do cone que é o círculo.
  8. Seção meridiana de um cone é uma região triangular obtida pela interseção do cone com um plano que contem o eixo do mesmo.